Hamilton Decompositions of Regular Tournaments
نویسندگان
چکیده
We show that every sufficiently large regular tournament can almost completely be decomposed into edge-disjoint Hamilton cycles. More precisely, for each η > 0 every regular tournament G of sufficiently large order n contains at least (1/2− η)n edge-disjoint Hamilton cycles. This gives an approximate solution to a conjecture of Kelly from 1968. Our result also extends to almost regular tournaments. MSC2000: 5C20, 5C35, 5C45.
منابع مشابه
A ug 2 00 9 HAMILTON DECOMPOSITIONS OF REGULAR TOURNAMENTS
We show that every sufficiently large regular tournament can almost completely be decomposed into edge-disjoint Hamilton cycles. More precisely, for each η > 0 every regular tournament G of sufficiently large order n contains at least (1/2 − η)n edge-disjoint Hamilton cycles. This gives an approximate solution to a conjecture of Kelly from 1968. Our result also extends to almost regular tournam...
متن کاملA survey on Hamilton cycles in directed graphs
We survey some recent results on long-standing conjectures regarding Hamilton cycles in directed graphs, oriented graphs and tournaments. We also combine some of these to prove the following approximate result towards Kelly’s conjecture on Hamilton decompositions of regular tournaments: the edges of every regular tournament can be covered by a set of Hamilton cycles which are ‘almost’ edge-disj...
متن کاملHamilton decompositions of regular expanders: a proof of Kelly's conjecture for large tournaments
A long-standing conjecture of Kelly states that every regular tournament on n vertices can be decomposed into (n− 1)/2 edge-disjoint Hamilton cycles. We prove this conjecture for large n. In fact, we prove a far more general result, based on our recent concept of robust expansion and a new method for decomposing graphs. We show that every sufficiently large regular digraph G on n vertices whose...
متن کاملApproximate Hamilton Decompositions of Robustly Expanding Regular Digraphs
We show that every sufficiently large r-regular digraph G which has linear degree and is a robust outexpander has an approximate decomposition into edge-disjoint Hamilton cycles, i.e. G contains a set of r−o(r) edge-disjoint Hamilton cycles. Here G is a robust outexpander if for every set S which is not too small and not too large, the ‘robust’ outneighbourhood of S is a little larger than S. T...
متن کاملHamilton decompositions of line graphs of perfectly 1-factorisable graphs of even degree
The proof of the following theorem is the main result of this paper: If G is a 2k-regular graph that has a perfect 1-factorisation, then the line graph, L(G), of G is Hamilton decomposable. Consideration is given to Hamilton decompositions of L(K 2k ? F).
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010