Hamilton Decompositions of Regular Tournaments

نویسندگان

  • DANIELA KÜHN
  • ANDREW TREGLOWN
چکیده

We show that every sufficiently large regular tournament can almost completely be decomposed into edge-disjoint Hamilton cycles. More precisely, for each η > 0 every regular tournament G of sufficiently large order n contains at least (1/2− η)n edge-disjoint Hamilton cycles. This gives an approximate solution to a conjecture of Kelly from 1968. Our result also extends to almost regular tournaments. MSC2000: 5C20, 5C35, 5C45.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A ug 2 00 9 HAMILTON DECOMPOSITIONS OF REGULAR TOURNAMENTS

We show that every sufficiently large regular tournament can almost completely be decomposed into edge-disjoint Hamilton cycles. More precisely, for each η > 0 every regular tournament G of sufficiently large order n contains at least (1/2 − η)n edge-disjoint Hamilton cycles. This gives an approximate solution to a conjecture of Kelly from 1968. Our result also extends to almost regular tournam...

متن کامل

A survey on Hamilton cycles in directed graphs

We survey some recent results on long-standing conjectures regarding Hamilton cycles in directed graphs, oriented graphs and tournaments. We also combine some of these to prove the following approximate result towards Kelly’s conjecture on Hamilton decompositions of regular tournaments: the edges of every regular tournament can be covered by a set of Hamilton cycles which are ‘almost’ edge-disj...

متن کامل

Hamilton decompositions of regular expanders: a proof of Kelly's conjecture for large tournaments

A long-standing conjecture of Kelly states that every regular tournament on n vertices can be decomposed into (n− 1)/2 edge-disjoint Hamilton cycles. We prove this conjecture for large n. In fact, we prove a far more general result, based on our recent concept of robust expansion and a new method for decomposing graphs. We show that every sufficiently large regular digraph G on n vertices whose...

متن کامل

Approximate Hamilton Decompositions of Robustly Expanding Regular Digraphs

We show that every sufficiently large r-regular digraph G which has linear degree and is a robust outexpander has an approximate decomposition into edge-disjoint Hamilton cycles, i.e. G contains a set of r−o(r) edge-disjoint Hamilton cycles. Here G is a robust outexpander if for every set S which is not too small and not too large, the ‘robust’ outneighbourhood of S is a little larger than S. T...

متن کامل

Hamilton decompositions of line graphs of perfectly 1-factorisable graphs of even degree

The proof of the following theorem is the main result of this paper: If G is a 2k-regular graph that has a perfect 1-factorisation, then the line graph, L(G), of G is Hamilton decomposable. Consideration is given to Hamilton decompositions of L(K 2k ? F).

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010